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Abstract 

Individual cancers, even of the same cell type, express unique arrays of distinctive tumor antigens, 

requiring accurate laboratory measurement of induced immunity against them problematic.  

Fluorescently tagged reagents (dextramers) that selectively engage clonal T-cell receptors (TCR) can 

cytofluorographically quantify both frequency and avidity antigen-specific T-cells, but cannot be 

synthesized without prior identification of the relevant antigen.  Since clinically evident tumors may 

contain as many as 300 unique point mutations capable of generating a large number of uniquely 

antigenic proteins, and since procurement of such information for each cancer is currently unrealistic, it 

is presently only possible to assess responses to anti-cancer immunotherapy by clinical determination of 

estimation of the tumor burden capacity.  Therefore, there is a need to develop methodology that can 

quantify the collective anti-tumor T-cell response, without prior identification of the full array of 

expressed tumor antigens.  We have developed a practical high-resolution method to measure antigen-

specific CD8 T-cell responses, via T-cell proton extrusion, an immediate result of selective TCR 

engagement by antigen presenting cells.  The fluorescent emission characteristics of hydroxypyrene 

trisulfonate (HPTS) correlate with solution-phase proton concentrations, manifesting as increased 

emission signals. We exploit this TCR characteristic within the context of T-cell activation and show 

that stimulation with anti-CD3 immunoglobulin stimulates measureable TCR to release protons to a 

significantly higher degree than unengaged TCR (p<0.001), both mouse and human systems.  Specific 

mouse CD8 T-cell responses to an exogenous tumor antigen (the eight amino acid derivative SIINFEKL 

of transfected ovalbumin) and human CD8 T-cell responses to a melanoma-associate tissue antigen 

(MART-1) differed from control (p<0.001).  Human CD8 T-cell responses to MART-1 peptide, 

presented by dendritic antigen presenting cells (DC) could be similarly distinguished from that to 

control peptide (gp100), even when the frequency of MART-1 responsive CD8 T-cells was titrated 

down from 23 percent to 1% (p<0.001), as measured in parallel by dextramers.  When implemented in a 



www.manaraa.com

 

 

3 
tumor-responsive animal model, treatment groups showed higher emission intensities compared to 

control groups at time points.  These preliminary results confirm the practicality of real-time assessment 

of antigen-specific TCR engagement, by proton release, a methodology which may become applicable 

to T-cell responses to any collective group of antigens. 
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Background 

The role of immune cells in the development or regression of cancer has been a subject of 

investigation for decades and the importance of the innate and adaptive immune systems in tumor 

regression have provided the rationale for modern immunotherapy and cancer vaccines. The 

introduction of checkpoint inhibitors, along with newer immunotherapeutic targets, has ushered in a 

new era in cancer treatment strategy. Despite the promising circumstances, our ability to predict or 

assess whether a patient is capable of responding to such newer agents remains inconsistent. Significant 

focus is needed on developing consistent and standardized methods to evaluate CD8 T-cell responses to 

administered therapies, and such efforts are not limited to the field of cancer therapy.1,2 The principle of 

developing surrogate endpoints based on immunological readouts for every patient can have tremendous 

advantages in navigating treatment strategies, especially if such information can be obtained prior to a 

clinically observed outcome. 

At the time of this study, there exist no more than 15 publications devoted to the subject of 

“immunological monitoring” within the context of cancer since 1978. Studying the elements of an 

immune response within different oncological frameworks therefore deserves more attention as the 

majority of efforts thus far have focused on predicting immunological rejection within the field of organ 

transplants. As cancer incidence rises, the utility of such data becomes increasingly relevant as newer 

therapies become available and costs for developing improved strategies continue to escalate.3 

Current approaches to assessing T-cell activation have remained rather consistent, with little 

innovation, over the past few decades. The traditional approaches largely rely on measuring cell 

proliferation, cytotoxicity or cytokine release. However, the probes used in such studies involve a small 

group of model antigens that are “tumor-associated” for the relevant cancer and have been isolated and 

well studied over time.  The domineering fallback of such a dependency lies precisely in the disregard 
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of the more immense cohort of antigens that are unknown or undefined and are arguably more relevant 

to the immune surveillance profiles of each patient. The uniqueness of each patient’s tumor and immune 

response therefore has been consistently assessed using artificial probes or reductionist assumptions that 

have failed to prove consistency or clinical utility over time. Though readouts such as cytokine-

mediated amplification or cytotoxicity are theoretically valid approaches to determine the reactivity of a 

patient’s CD8 T-cells, newer approaches need to be developed that look towards the use of undefined 

sets of antigens to determine the state of a patient’s treatment response. Our aim is thus to develop an 

approach that seeks to reconcile the need to identify causative antigens with an assay system that is 

capable of measuring early signs of immunological activation in CD8 T-cells that can unfailingly be 

identified in every patient. 

Traditional Methods of Immunological Monitoring: 

Enzyme-linked Immunospot (ELISPOT), cytokine flow cytometry, and tetramer or dextramer 

positivity are among the most widely available and utilized approaches. Though ELISPOT is the most 

frequently used method of detecting the number of reactive CD8 T-cells in patient samples, it was not 

shown to correlate effectively with the other aforementioned techniques in a recent cancer vaccination 

trial.4 This limited concordance suggests that the frequency of circulation of reactive populations of 

cells may not be adequate enough for detection and that perhaps the vaccinations themselves could have 

failed to elicit robust responses as well. 

A longstanding immunological monitoring trial that spanned twelve academic centers, from five 

European countries, concluded that our capability of assaying antigen specificity is extremely variable 

and made recommendations for standardizing protocols.5 A cited reason for the inter-center variability 

included the differing yield of assayable T-cells at each institution, along with inconsistent levels of 

background noise with each readout strategy. Specifically, the study encountered difficulties with 
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baseline spot numbers of ELISPOT testing and was unable to correlate to distinct variables or 

outcomes of the study.  

Intracellular cytokine analysis with flow cytometry and structural probes such as MHC tetramers 

or dextramers are also various methods charged with the universal challenge of developing a consistent 

assessment or readout from inconsistent starting material, such as the variable yield of CD8 T-cells seen 

in different patients. Both approaches require standardized protocols and quality control assessments 

prior to use, which can dictate the interpretation of results. For example, even factors such as staining on 

ice compared to room temperature affect the avidity of a tetramer-TCR interaction as the ensuing results 

can be influenced by background interactions. This has tremendous consequences for inter-institutional 

variability and consistency in the acquired results. Tetramer or dextramer analysis also has a crucial 

dependence on identifying the three-dimensional structure of immunodominant epitopes for TCR 

engagement, which is an insurmountable logistical challenge considering the innumerable tumor 

associated antigens seen in cancer patients.  

Biophysics of Activation: Calcium flux and Proton Extrusion 

Calcium flux, which represents the intracellular signaling cascade in the T-cell, is a well studied 

and characterized as a marker of immune activation.6 Calcium ions are released from intracellular stores 

during activation, mainly for purposes of secondary cellular signaling, and such stores may additionally 

induce an influx of exogenous calcium through selective channels on the cell membrane.7 These signals 

are essential for both short-term and longer-term processes such as cell motility, which can halt and can 

promote a more stable immunological synapse, or differentiation into effector or memory phenotype. It 

has been observed that even calcium ion flux can have variable patterns and manifestations depending 

on the biophysical interactions that occur in the vicinity of the TCR. Under fully activating conditions 

for example, the kinetics of the calcium ion changes resembles a sharp increase followed by a smooth 

plateau. Even a small disturbance of the full signal can result in a delay or loss of cellular activation or 
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proliferation and hence indicates the importance of sustained calcium signaling with respect to 

cellular metabolic processes. The importance of a sustained calcium signal was shown to enable 

transcription and its resulting processes, including downstream protein synthesis.8 

Prior to activation, T-cells have low rates of cellular metabolic activity, though once activated, 

undergo antigen-specific differentiation, optimize cytotoxic processes, and engage in paracrine signaling 

via cytokine secretion. Downstream to the biophysical changes that occur such as calcium or proton 

signals, other signaling pathways can be activated such as the MAP kinase pathway via RAS and RAF. 

Costimulatory proteins such as the cytokine receptors or B7 can also contribute to T-cell activation.9,10 

Such activities require significant biosynthetic efforts and hence rely on energy utilization and cellular 

respiration. Extracellular acidification or proton flux is related to the catabolic pathways that seek to 

generate ATP at the onset of cellular activation.11,12 Extracellular acidification is largely recognized as a 

byproduct of lactic acid production within a cell and a profound increase can be indicative of 

intracellular changes associated with ATP utilization.13 Such measurements can enable the identification 

of bioenergetic states associated with environmental-induced alterations in cellular physiology and even 

empower drug discovery efforts. 

Rabinowitz and colleagues compared acid release, calcium flux, and T-cell proliferation 

responses to a variety of different stimulating ligands.14 Their study noted that significantly greater 

concentrations of antagonistic ligands or antibodies were needed to block the early events associated 

with T-cell activation such as proton release or calcium flux. They were the first to propose that a 

hierarchy exists within T-cell signaling in which various stages of activation correlate to the degree of a 

ligand’s affinity and T-cell receptor engagement.  

Use of model antigens 

Classical approaches to predicting clinical responses have relied on delayed-type 

hypersensitivity approaches to help provide some measure of CD4 or CD8 reactivity.15-17 As mentioned 
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previously there is a reliance on T-cell defined antigens, which have shown to be poor correlates of 

post-therapy outcomes. Such efforts therefore have a poor track record in developing surrogate 

measures of the overall cellular immune response to therapy due to low precision, sensitivity, and 

relevance to the library of unclassified antigens encountered by a host’s immune system. Tyronsinase, 

MART-1, and gp100 are widely expressed in melanoma, for instance, but are also proteins associated 

with normal tissues. Other melanoma probes include MAGE1, GAGE, and NY-ESO-1, all of which are 

also expressed in normal or neoplastic testicular and placental tissue. Therefore, the model antigens 

available to us are theoretically incapable of outputting tumor-specific trends for every patient. Some of 

the most commonly cited disadvantages to such approaches include the requirement to know and 

identify a peptide epitope and restricting allele, both of which require a significant level of technical 

expertise (i.e. protein folding conditions) to drive the construction of specific peptide:MHC multimers, 

which demonstrates how the evaluation of single or few epitopes may not provide a complete picture of 

the total immune response to the gamut of tumor antigens.18 

  Although MART-1 positivity is sometimes reported to correlate to tumor regression, Saleh and 

colleagues indicated that such an observation was restricted to tumor antigen-loss circumstances.19 It 

was nevertheless acknowledged that immune responses to this specific antigen may be insufficient to 

affect survival in patients with progressively-advanced disease. This is intuitive in the sense that such 

patients may have a complex and diverse repertoire of tumor-associated antigens and therefore trying to 

correlate a single, epitope-specific CD8 cell expansion to clinical tumor regression may not be a 

consistent strategy of deciphering a patient’s immune response. In fact, it was shown that even though a 

modified gp100 peptide vaccination could correlate with the expansion of a peptide-specific CD8 

population expansion, not all of these expanded cells were shown to be functionally responsive with 

respect to cytokine secretion and there was a lack of tumor regression in the trialed patients.20 



www.manaraa.com

 

 

12 
The dynamic antigen landscape of a progressing tumor could also account for the differences 

seen in such studies. Spontaneous immunoselection of dominant epitopes remains a subject of 

relevance, as many studies have shown that multiple metastatic nodules in the same cancer patient may 

show a progressive loss of tumor-associated antigen:MHC complexes with time.21-23 It is thus crucial to 

avoid discounting the observation that tumor heterogeneity, especially in advanced cancer patients, can 

result in a diverse T-cell antigenic repertoire and how the limited pool of known antigens cannot 

logistically reflect the complexity of this larger antigen burden seen in such patients. Our current 

approaches to tumor vaccine therapy as well are simply too selective of a strategy to prevent tumor 

growth and this is largely due to an assumption that every tumor cell shares a common antigen and does 

not account for tumor heterogeneity and capacity for epitope selection with time.24 

Already, there is truly no consensus on evaluating unknown or undefined Ag and research 

efforts have recently been directed towards biophysical phenomena associated with early activation 

signals such as intracellular receptor domain phosphorylation or calcium flux, among others, since they 

can be assessed qualitatively and limit the need for specific biomarkers. Surface plasmon resonance, 

quartz crystal microbalances, cantilever-based microarrays, and field effect transistors are among a wide 

range of technologies with accelerating scientific development over the past decade with viable 

alternatives to measure biomolecules associated with various cellular outputs resulting from cellular 

phenomena such as an immune activation.25-28 Interestingly, the number of published journal articles 

including the terms “biosensor” or “lab on a chip” have enjoyed an exponential increase over the years, 

representing a keen interest in point-of-care diagnostics and its applicability to immunomonitoring.29 

The majority of such methods rely on amplification of biochemical signals arising from exceedingly 

small numbers of cellular subsets, such as activated CD8-APC pairs in our study, which would 

otherwise be largely undetectable. 
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Thus, it is more than evident that our strategies of monitoring responses need to be directed 

towards partially or undefined antigens, such as assessing cellular responses to tumor-cell lysates, 

modified tumor cells, or even DC-tumor cell fusions. The large variety of antigens may differentially 

induce adaptive immune responses, including both the humoral and cytotoxic domains, to help decipher 

a patient’s response. It was previously proposed that a limited number of antigens in a tumor cell-lysate, 

or other composite antigen preparations, should at least be characterized in order to monitor specific 

components, though we believe the relevance of identifying such antigenic compartments remains 

debatable and subject to change with each assessment. 30-32 

Summary of Background and Specific Aims of this Study 

Much scientific insight has been gained since the 1980s in understanding T-cell activation via 

the T-cell antigen receptor complex (TCR) and its downstream signaling effects.33-35 We now 

understand that activation depends on the careful interplay of early signaling cascades via 

phosphorylation, intra- and extracellular ion shifts, cytoskeletal reorganization, and eventual gene 

transcription of activation cytokines, such as IL-2.36-39 Despite our sophisticated mechanistic 

understanding, there is no reliable method of assessing the induction or augmentation of a patient-

specific, tumor-directed T-cell response.31 Current laboratory efforts seek to assess T-cell activation by 

means of biochemical changes such as cytokine secretion, cell surface markers, clonal expansion, 

tetramer- or dextramer-positivity, and even apoptosis readouts. However, the scope of clinically 

relevant, identified cancer epitopes, utilized as probes in such assessments, remains narrow since such 

readouts are largely confined in potential on two fronts: the limited range of employable antigens (Ag) 

and the unique and dynamic nature of tumor-associated antigens within each patient.30,40,41 In malignant 

melanoma for example, antigens such as MART-1 that are common to even normal tissues are used in 

crude assessments to essentially guess the level of CD8 anti-tumor responses. The clinical utility and 

translational potential of our established antigen libraries are astounding imperfect, representing both a 
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need for increased standardization efforts and the exploration of newer strategies to keep pace with 

the clone-specific responses of each patient.40-42  

Our study seeks to introduce a novel readout on the totality of an immune response to antigens 

that need not be defined, a potential turning-point in the current strategies used to monitor patient 

responses to therapies ranging in context from cancer, to autoimmunity, to vaccine therapy. The target 

of our study is to develop novel approaches to clinically applicable immune-monitoring by eliminating 

the reliance on a limited number of shared antigens to paradoxically address the complex and ever-

adapting repertoire of immunogenic epitopes encountered by a host’s immune system. Our strategy 

seeks to rapidly and collectively assesses CD8 T-cell reactions to sets of Ag that have been internalized 

and processed by autologous antigen-presenting cells (APC), with direct translational relevance to 

assessing the sets of patient-specific antigenic responses, regardless of their actual identities. We believe 

this approach is extremely useful in monitoring real-time T-cell activation following introduction to 

antigenic stimuli.43-47  

Materials, Methods, and Approach 

Our study seeks to demonstrate a system that characterizes T-cell activation from detectable 

extracellular proton flux via spectrophotometry using a pH-sensitive fluorescent dye, within polyclonal 

and antigen-specific contexts. It has been shown in previous literature that 8-hydroxypyrene-1,3,6-

trisulfonic acid (HPTS) is a photo-activated multivalent molecule whose fluorescent emission spectrum 

varies sensitively with pH changes.48-50 The compound is nontoxic and not perturbic to cells due to its 

inability to cross the membrane lipid bilayer, and its point emissions, which are reported ratiometrically, 

correlate well to the proton concentration of a solution in several studies.51-56 We anticipate that this 

method, which represents an indirect method of proton “capture”, will serve as a conceptual validation 

of an alternative approach to assessing T-cell reactivity and support the development of downstream 
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strategies for monitoring T-cell responses directed towards undetermined populations of antigens. 

Our approach is one of the simplest and most cost-effective methodologies yet proposed in assessing T-

cell activation, and maintains a unique level of novelty and innovation, and promises to bring us closer 

to earlier and more effective assessments of patient treatment responses to help navigate clinical 

decisions. 

Polyclonal T-cell stimulation monitoring  

Spleens were obtained from a 8–week-old female C57/BL6 mice (Taconic Biosciences, NY, 

USA) and splenocytes were isolated though grinding and centrifugation of filtered splenic tissue in 

RPMI medium supplemented with antibiotics and 10% fetal bovine serum. Contaminating red cells 

were eliminated via treatment with ACK lysis buffer, followed by gradient centrifugation for 

purification using a Lympholyte-M protocol (Cedarlane Labs, Canada). Cells were counted, from which 

CD8 T-cells were purified using a negative selection EasySep protocol (Stem Cell Technologies, 

Canada). Cells were stimulated via 1uM anti-CD3e mouse antibody (eBiosciences, CA, USA) and 

plated into 96-well plates preloaded with 0.001M (in normal saline) of photoacid (8-hydroxypyrene-

1,3,6-trisulfonic acid; Sigma-Aldrich, MO, USA) at indicated cellular concentrations. Spot emission 

assessments were taken at 2-minute time intervals for 30 minutes at excitation and emission 

wavelengths of 405nm/445nm and 520nm respectively using a Spectramax Photometer and SoftMax 

Pro Software (Molecular Devices, CA, USA). The point emissions are reported as mean ratiometric data 

corrected for background noise as determined from non-photoacid containing wells. 

APC:T-cell Couplet Formation and Imaging Flow Cytometry  

An Amnis ImageStreamXMark II fitted with 4 lasers (405nm, 488nm, 642nm, and 785nm) was 

used for imaging 60x magnification.  A minimum of 1000 images were collected following mixing and 

centrifugation of the Ag-presenting cells (APC) and T-cells at a 2:1 ratio for 60 seconds at 4˚C 
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(Eppendorf, NY, USA). Gating strategy is similar to a previous study, with a focus on FITC, BV421 

double-positive populations.57 Couplets were chosen due to good quality and resolution.  
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Antigen-specific Assessments 

Utilizing the well-established murine OT-1 system, naïve 8-week-old female OT1/RAG2(-/-) 

mice (specific for a chicken ovalbumin peptide fragment 257-264 presented by the MHC class I 

molecule H2-Kb) and age-, sex-matched C57/BL6 (Taconic Biosciences, NY, USA) were sacrificed, 

underwent splenic harvest, and CD8 negative isolation protocols as described above. Bone marrow-

derived dendritic cells (BMDC) were isolated from age and sex-matched C57/BL6 via an established 

protocol using mouse-GMCSF (eBiosciences, CA, USA) and were incubated with either SIINFEKL 

(OVA(257-264)) or control EIINFEKL (eBiosciences, CA, USA) at 1uM for 4 hours on day 7. OT1-

derived CD8 T-cells were incubated at 37˚C and combined with day 7 BMDCs at a concentration of 

1E6 cells/mL and 2E6 cells/mL (1CD8:2APC), respectively. Titration experiments utilized identical 

configurations of peptide-pulsing doses and OT1 responder cell dilutions with control C57/BL6 CD8s, 

and vice-versa. The combined DC/T-cell suspension was spun (Eppendorf 5810R centrifuge, 1 minute, 

4˚C, 1650rpm) and lightly resuspended to maintain APC-CD8 interactions. The spatial orientation of 

conjugated APCs and CD8s was confirmed from an Amnis® imaging flow cytometer (Figure 2, EMD 

Millipore, MA, USA). The centrifuged solution was aliquotted into black Costar 96-well plates (Fisher 

Scientific MA, USA) into a final concentration of 0.001M HPTS (in normal saline) and subjected to 

spectrophotometric analysis as mentioned above.  

For parallel experiments with human cells, we utilized Day-7 blood monocyte-derived dendritic 

cells (DCs) from HLA-A2 normal donors, which were either loaded overnight at 1uM concentration 

with a MART-1-derived 26-mer “long” peptide (MART-115-40 peptide 

KGHGHSYTTAEELAGIGILTVILGVL, “MART-1 LP”) which requires intracellular processing to 

expose the immunodominant MART-126-35 peptide ELAGIGILTV, or with the 26-35 peptide itself for 

4-6 hours prior to assessment, dubbed “short” peptide (MART-1 SP). A second melanoma-associated, 

HLA-A2-restricted peptide derived from the gp100 protein (gp100154–162 KTWGQYWQV) acted as a 
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negative control.  Responder cells included either the human MART-1-specific TCR transgenic 

CD8+ clone DMF5 (recognizing MART-127-35, a kind gift of John Wunderlich, NIH/NCI) which were 

defrosted and restimulated with IL-2 one day prior to use, or naturally-occurring MART-126-35–specific 

T-cells expanded from normal donors as described below. Titration experiments utilized identical 

configurations of peptide-pulsing doses and naïve CD8 responder cell dilutions from the same donor. 

MART-1-reactive CD8 Expansion 

Blood was collected from HLA-A2 restricted donors and subjected to Ficoll gradient purification 

and washing, according to a previously-established protocol to yield peripheral blood mononuclear cells 

(PBMCs) which could be passed over a microfluidic chamber to convert blood monocytes to monocyte-

derived dendritic cells by “plate passage”.58-60 PBMCs were divided into appropriate separate groups 

from which either APC populations or CD8+ responder cells could be derived as previously described. 

For plate passage, 25x106 PBMCs in autologous plasma were pre-incubated on a flow chamber plate for 

1 hour. The cells were then removed from the chamber, which was then connected to a syringe pump 

and the cells were passed through the chamber under flow conditions. Plate-passed PBMCs were 

combined with MART-1 long-peptide (1uM) and responder CD8 cells at a ratio of 1 PBMC:1 CD8 

under an assumption that the former consists of a 10% monocyte population. These cells were then co-

cultured in 12-well plates and were fed IL-2 (12.5 u/ml final) and IL-7 (5 ng/ml final) on day 3 and 

every 3 days until day 9, when they were harvested and stained for MART-1 specificity utilizing 

dextramer staining. For dextramer-based characterization, cells were resuspended in 50ul FACS staining 

buffer and 10ul of each dextramer (Immudex, Denmark, Sweden) added to the tube. Cells were mixed 

and incubated at room temperature for 10 minutes in the dark. CD3 and CD8 antibodies were then 

added and the cells incubated at 4 degrees for an additional 20 min. Cells were washed and spun and 

resuspended in FACS buffer containing 7-AAD for live/dead discrimination and analyzed on a 

Stratedigm 13L flow cytometer (Stratedigm, San Jose, CA). For titration experiments additional naïve 
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donor CD8 cells were isolated from the identical donor on the same day. In the event that dextramer 

positivity indicated that initial expansion was inadequate, a reboosting procedure was implemented, 

similar to a previously established protocol.61 Cells were boosted with gamma-irradiated and peptide 

loaded PBMC populations and supplemented with IL-2 and IL-7 as described above and reassessed at 

day 9 post-boost for clonality and expansion levels via dextramer-positivity. 

Correlation studies with Calcium Flux 

Intracellular calcium was measured as described previously.62 Negatively-purified T-

lymphocytes were incubated with Indo-1-AM (Life Technologies, MA, USA) at 1uM dissolved in 20% 

Pluronic F-127 and dimethylsulfoxide for 45 min at 37 °C with limited light exposure and washed 

subsequently prior to murine CD8-PerCP-Cy5.5 staining (eBiosciences, CA, USA). Day 7 murine 

BMDCs, which were pulsed with antigen peptides (either SIINFEKL or EIINFEKL) for 4 hours at 

37°C, were stained simultaneously with CD11c-FITC and subsequently washed. Human correlates were 

stained with CD11c-PerCP-Cy5.5 and CD8-FITC. Cells were placed on ice prior to flow cytometry 

(LSRII, Becton Dickinson NJ, USA) and warmed to room temperature via water bath immediately prior 

to mixing at 2:1(APC:CD8) concentrations. The cell mixture containing BMDCs and OT-1 CD8+ T-

cells were centrifuged and lightly suspended prior to sample loading into the flow cytometer. Relative 

intracellular calcium concentrations were determined by the ratio of violet:blue (420:510 nm) 

wavelengths. Data is shown as a median ratiometric emission for Indo-1 for the time interval following 

conjugate formation. Raw data were analyzed with FlowJo software via median kinetic signal 

monitoring (Treestar OR, USA). 

Murine Tumor-Responsive Model and In Vivo Fluorometric Assessments 

Tumor-bearing C57/BL6 mice underwent six, semi-weekly “murine extracorporeal 

photopheresis” (m-ECP) treatment sessions, occurring on Day 10, 13, 16, 19, 22, and 25 following 

tumor inoculation with 105 YUMM melanoma cells into the right flank. For each treatment session, 
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PBMC were collected from whole blood via retroorbital venous capillary draws and subjected to 

gradient centrifugation for purification using a Lympholyte-M protocol (Cedarlane Labs, Canada). 

YUMM cells were trypsinized (Trypsin/EDTA, 0.25%) and harvested from cell culture, washed, and 

subjected to 200nM 8-methoxypsoralen (UVADEX®) for 20 minutes, followed by 4J of UVA 

irradiation. Purified PBMC in autologous plasma were pre-incubated on a flow-chamber plate for 1 hour 

with PUVA-treated YUMM cells. The cells were then removed from the chamber, which was then 

connected to a syringe pump. This mixture of irradiated tumor cells and PBMCs was passed over a 

microfluidic chamber to convert blood monocytes to monocyte-derived dendritic cells by “plate 

passage”.58-60 The flow conditions were uniform during the plate passage step (0.49 mL/min) and 

washed afterwards at higher flow rates (1.49 mL/hr) with fetal bovine serum. Plate-passed cells were 

collected, washed, and spun and resuspended in PBS, before being reintroduced systemically via 

retroorbital injection. Tumor volumetric measurements were performed using precisely-calibrated 

calipers prior to each treatment.  

Days 16, 22, and 25 involved in vivo fluorometric assessments during which a mouse was 

sacrificed from both groups (control and “m-ECP”), each undergoing CD8 negative selection 

purification via splenic and lymph node harvests as described earlier. YUMM tumor cell lysate was 

obtained by pelleting 20 x 106 cells in PBS (2-4 x 106 cells/mL), and subjecting this pellet to four freeze-

thaw cycles by alternating liquid nitrogen and 37°C water bath treatments. Cells were sonicated for 15 

seconds at 38% amplitude (Teledyne Tekmar, Ohio, USA) to rupture cell membranes. Cells were spun 

at 12,000g for 20 minutes at 4°C to remove cellular debris. Supernatants were collected and stored at -

20°C, before being administered to day 7 murine BMDCs, isolated using the aforementioned protocol, 

for 24 hours. Lysate-pulsed BMDCs were then combined with purified CD8 T-cells of the control- and 

treatment-group mice via centrifugation, and emission patterns were collected every 2 min for 60 min 

using the protocol described previously for antigen-specific experiments. 
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Results 

Detectable Polyclonal Activation with Cellular Limits 

Polyclonally activated CD8 T-cells demonstrated a sustained and consistent higher emission 

intensity than unstimulated cells. This is depicted graphically in Figure 1. This activated pattern of 

emission extends in sensitivity from ~104 cells down to ~10 cells per well (p<0.001) with detection 

limits seen in 105 to 106 cells per well (p>0.05). A somewhat noticeable decrease in activated intensity is 

also noted extending from 102 to 104 cells. Figure 1 depicts these results by indicating mean emission 

intensities with plotted standard error bars.  

Observable Antigen-Specific Activation of murine OT1 CD8+ Responders. 

Following DC/CD8 co-culture and centrifugation-driven dimer formation (Figure 2), CD8 

stimulation via antigen-specific and antigen non-specific peptide-pulsed dendritic cells (BMDCs) was 

evaluated. At 1uM peptide loading, SIINFEKL-presenting DCs are capable of eliciting higher 

fluorescence signals than control EIINFEKL-presenting cells when interacting with specific OT1 CD8+ 

responder cells (Figure 3a). This observation was significant for all OT1 cell dilutions (diluted in 

C57/BL6 negatively-purified CD8s) tested, including 10% and 1% values. Upon pulsing with 10-fold 

less peptide (0.1uM), similar results were observed (Figure 3b). 

When APCs are pulsed with a peptide concentration of 0.01uM, higher emission signals are 

observed in responder dilutions of 100% and 10%, but not seen in 1% populations (Figure 3c). At the 

lowest titration level of 0.001uM peptide, significant difference is only seen at the 100% OT1 responder 

level, but lost at the 10% and 1% levels. These data indicate that Ag-specific T-cell activation can be 

monitored effectively utilizing the pH sensitive dye at physiologically relevant peptide and APC to T-

cell concentrations.  
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Conjugate Formation and Detectable Activation of Human MART-1-specific T-cells  

Utilizing human DC loaded initially at 1uM of peptide, conjugate formation and T-cell 

stimulation assays were carried out with a MART-1-specific human CD8+ T-cell readout line to 

confirm antigen-specific APC-CD8 interactions.  Figure 4a illustrates that significant differences were 

seen when plate-passed cells, a source of 10-12% dendritic APC, are incubated with either unprocessed 

(26-mer) and processed (10-mer) MART-1-derived peptides (LP and SP, respectively) versus control 

gp100 peptide, when these APCs are complexed with a 100% specific DMF5 responder cells. DMF5 is 

a MART-1-specific TCR transgenic CD8+ clone (recognizing MART-127-35) which should respond in 

an Ag-specific manner following stimulation with DC either surface-labeled with the 10-mer MART-1 

peptide or which had processed and presented the 26-mer “long” peptide. Significant differences are 

noted between emissions observed following conjugate formation between DC and T-cell (black bars) 

verses cells passively mixed in adjacent wells (grey bars). Dextramer staining (Figure 4b) confirmed a 

high percentage of dextramer positivity for the DMF-5 line utilized in these assays. Interestingly, 

MART-1 SP conjugation had the widest difference between conjugated cells than unconjugated passive 

interactions, perhaps as a result of the higher density of specific peptides presented on the cell surface 

following exogenous loading of pre-processed, form-fitting peptides. Nonspecific (gp100) peptide-

loaded cells were unable to establish notable signal differences from baseline, even with DC/T-cell 

complexation. 

Detectable Antigen-Specific Interactions with Naïve Expanded CD8 Responders 

Since normal human donors have an unusually high frequency of naïve, MART-1-specific 

precursors in their blood, it is possible to derive Ag-specific T-cells directly from normal HLA-A2 

donors which can act as fresh Ag-specific T-cells for stimulation assays.61,63 Separate expansion trials 

were accomplished utilizing normal donor blood as a source of naïve T-cells as described in Materials 

and Methods. Following 1-week exposure of CD8 T-cell populations to MART-1 peptide-loaded DC, 
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successful expansion of MART-1-specific T-cells was accomplished from all donors. MART-1 

dextramer positivity of the T-cells was confirmed following expansions, which resulted in T-cell 

populations in the 0.9% to 21.1% range. 

Staining for the most successful expansion, 21.1%, is shown in Figure 5a. Each of the three 

expanded T-cell populations was then utilized as responder T-cells in DC stimulation assays, which 

mirrored those, previously carried out on the DMF5 transgenic line experiments. In each trial as shown 

in Figure 5b, conjugated pairs showed notable increases in emission signal over control peptide-loaded 

DC, consistent with antigen-specificity. One of these expansions successfully generated a dextramer-

positive population of 2.3% and the expanded T-cells were used or diluted to increasingly lower specific 

T-cell ratios (1.2%, 0.2%, and 0.02% respectively) with autologous, non-specific T-cells. At all specific 

T-cell ratios tested, T-cell activation and fluorescent emissions were higher in cells stimulated with 

specific MART-1 loaded DC compared to control gp100, with the exception of two trials (0.2% and 

0.02% dextramer-positive groups). These observations indicate that specific T-cell populations at levels 

as low as 90 per 10,000 in peripheral blood could be amenable to this analysis. The lowest MART-1 

naïve CD8 expansion group was also capable of yielding detectable differences in calcium signaling by 

means of intracellular calcium flux (Figure 7). To look at this data as a whole and determine whether a 

relationship exists between mean fluorescent differences and antigen specificity, a regression plot was 

developed (Figure 6). Mean emission differences between Ag-specific and –nonspecific differences for 

the MART-1 expansion assessments are summarized and demonstrate a linear correlation to dextramer 

values, with few notable statistical outliers, reasons for which are elaborated upon in the “Discussion” 

section below. 

Significant Differences in Emission Intensity using Unknown Antigens as Probes in an Animal Model 

Mice from control and treatment groups were analyzed at three separate time points of six total 

treatments. When subjected to APCs harboring tumor cell lysate antigens, CD8s from the treatment 
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group revealed higher emission signals compared to controls for all assessments (Figure 8). The 

largest difference was seen during the earlier half of scheduled treatments. There are notable 

fluctuations seen with the emission patterns of the control group, though this group’s T-cells were 

consistently less ”reactive” for all time points.  It is not until the final treatment (Day 25) that a 

significant difference in tumor volume is clinically observed between the groups for the remainder of 

the experiment. 
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Conclusion 

The ability to simply and accurately quantitate the upregulation or downregulation of T-cell 

based responses has vast implications for treatment of T-cell mediated diseases and vaccination-based 

targeting in cancer. Since there is no longer a need to follow only defined Ags, the use of dynamic 

antigen sources such as cell lysates or disease-associated whole proteins defined by personalized 

genomic sequencing allow potential treatment monitoring against a panoplyPolyclonally activated of 

T-cell relevant Ags. This capability is especially relevant within the context of immunotherapy, as each 

patient engages to his or her own unique array of tumor-associated antigens presented via class 1 major 

histocompatibility complexes (MHCs) to clone-specific T-cell receptors. Our study provides evidence 

advocating for a shift in clinical readout strategies to assess the level of global TCR engagement in a 

host and a capability to sensitively discriminate between specific and nonspecific T-cell stimulation by 

APC. We established this with a rapid assay in murine and human antigen systems via 

spectrophotometry. Due to the reliance on an extracellular analyte, our strategy is capable of detecting 

signals deriving from rare subsets of cells, that are amplified extracellularly to increase detection 

capability down to levels of approximately 10 polyclonally activated cells, 0.001M peptide-pulsed 

APC:CD8 conjugates, and ~90 antigen-specific T-cells out of 10,000 unpurified donor PBMC within 

our MART-1 system. Although the latter sensitivity may be attributable to the higher number of 

stimulating APCs in the unpurified expansion samples, the translational capability of utilizing 

unpurified patient PBMC for routine TCR engagement assessments is conserved.  

The underlying motivation of our fluorometric approach is to overcome the severe limitations 

that exist for monitoring Ag-specific T-cell responses in cancer and autoimmune therapy, particularly 

attempts to quantify the complexity of an immune response based on limited set of probes. 64-67 As 

mentioned previously, current favored strategies rely heavily on tetramer or dextramer positivity and in 

vitro re-stimulations using APC pulsed with defined peptide epitopes in an attempt to quantify the 



www.manaraa.com

 

 

26 
degree of a patient’s immune reactivity and correlate to clinical outcomes.42 Such approaches to 

assess tumor immunity often rely on following responses only to established tumor antigens, many of 

which are shared with normal tissues (i.e. MART-1, gp100, prostate-specific antigen), and have failed 

repeatedly due to the dynamic expression of tumor-specific neo-antigens and response kinetics of an 

ensuing immune response. The complexity, cost and reality that many diseases do not possess a fully 

characterized library of antigens renders the “single-antigen, single-readout” a currently intractable 

challenge.  The rate of tumor mutation heterogeneity renders these methodologies, which need to 

uncover MHC-restricted epitopes at nearly every phase of treatment, rather impractical across virtually 

every tumor type. 68-71 In addition, bona fide immune responses leading to tumor regressions often have 

not correlated with T-cell responses against the limited number of Ag followed in clinical trial, 

indicating that targeting and monitoring is neither practical or expected to yield satisfactory clinical 

outcomes. 72-74 Yet another inconsistency in the field of immunological monitoring is determining what 

an appropriate threshold would be for a “positive response”, as this is currently unknown and amounts 

to relative estimation. 75-78 

Here, we present an approach that provides a collective assessment of immune reactivity, 

qualitatively and quantitatively, that can provide prompt and accurate clinical information. The model 

antigen systems utilized in our study undergo the same internalization, processing, and presentation as 

do the distinct tumor antigens and are detectable at frequencies that rival clinical MHC dextramer 

values.79 Moreover, at steady state, a single cell is capable of producing ~108 protons per second, a rate 

that can be raised between ~10 to 100%, depending on the method and degree of receptor stimulation. 11 

By utilizing an approach that detects such extruded protons, our system may also possess a signal 

intensity that correlates to the presence of relevant polyclonal antigens, regardless of their identity. For 

these reasons, our proposed strategy has major ramifications for the field of immune-monitoring as it 

shifts the focus towards quantifying the total reactivity of clonal T-cell populations.  
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The utility is understood considering the numerous potential immunotherapeutic and cancer 

vaccine agents are currently being trialed, including immune checkpoint inhibitors and DC-based 

vaccination strategies. But with limited options of immune-monitoring tools for evaluation, oftentimes 

researchers are forced to use only gross assessments such as tumor size or symptom amelioration to 

define therapeutic benefit. Monotherapies such as extracorporeal photopheresis (ECP), used for both 

cutaneous T-cell lymphoma and autoimmune diseases such as graft-versus-host diseases, could benefit 

from such an analysis, as treatment-resistant cases exist could benefit from earlier shifts in treatment 

course, particularly since ECP has uniquely shown both immunogenic and tolerogenic effects. 58,80-83 

Several existing technologies are capable of sensing proton differences in solution, including pH 

microelectrodes, pH radiolabeled and fluorescent probes, and silicon field effect transistors. 84-88 

Previous technologies looking at proton flux within the context of activated T-cells include light-

addressable potentiometric sensors (LAPS) and chemically-modified field effect transistors (CHEM-

FET), based on similar semiconductor-based technologies. 11,45 Both showed tremendous sensitivity in 

detecting proton flux from cells following soluble stimulatory factors and have shown more promise 

than traditional assays. 89 Though Stern’s one-dimensional CHEM-FETs showed tremendously sensitive 

detection capabilities (~200 cells within 10 seconds of a stimulus), issues commonly acknowledged with 

CHEM-FETs includes inter-device manufacturing variations potentially blunting sensitivity, temporal 

deterioration of device performance, inconsistent calibration efforts and of course overall expense. 12 

Moreover, such technologies have yet to evaluate real-world cellular interactions vital to CD8 activation 

such as the use of a patient’s autologous dendritic cells as activation agents, not only a crucial wing of 

modern cancer immunotherapy, but also a promise to monitor patient responses to immunomodulatory 

treatments using personalized antigens and responder cells. 90-94 Our fluorometric approach therefore 

potentially offers a simple and low cost alternative with respect to many of these aforementioned 
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challenges as it enables the local and rapid detection of extracellular proton flux without a 

manufactured nanodevice, allowing monitoring of APC:CD8 interactions in a variety of clinical 

settings.  

Benefits from the fluorometric proton flux immunoassay itself include its simplicity and 

versatility, which enable a considerably more rapid readout than current assaying protocols, and allows 

for the combination of readouts from numerous techniques to evaluate whether clinical correlations can 

be predicted more robustly and with increased accuracy. Further studies will naturally be crucial to 

evaluate whether clinical correlations can be drawn from fluorometric proton flux data, particularly 

since evaluation guidelines are unclear in regard to using sets of undefined antigens, such as tumor cell 

lysates. 31,42,95 Unknown antigens, which are dynamic in frequency and vary between patients and even 

within a patient’s tumor itself, are the key to providing insight to the competency of any 

immunomodulatory treatment. The complexity of tumor associated antigens are undeniable and matched 

by the inner workings and sensing capabilities of an immune response, neither of which can adequately 

assayed or understood using the sparse repertoire of known cancer epitopes. The significance of our 

study lies in the validation of an early-stage, alternative strategy and establishing the potential for 

downstream advances in immunological monitoring that will undeniably translate into more effective 

treatment response prediction models, tailoring of clinical decision-making, and increased 

“personalization” as we approach the unique case of every patient. 

Drawbacks of this Study 

By no means is our approach the solely appropriate one for discriminating overall TCR 

engagement. Our methods are a rudimentary strategy that seeks to provide conceptual evidence for an 

approach that would yield clinically meaningful data in a variety of immunogenic and immunotolerant 

settings. While it is established to correlate with T-cell activation, extracellular acidification ultimately 

represents a single facet of a complex set of reactionary biochemical changes. With respect to the 
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materials and protocols, HPTS may also not be the best indicator of extracellular [H+] as other 

photoacidic fluorescent agents exist. 96,97 Additionally, there are other agents that can help determine the 

analyte levels resulting from other cellular processes apart from cellular acidification. Calcium flux, 

which is investigated in this study, can be studied with a fluorescent microscopic or plate-reader 

approach, the latter allowing for increasingly high-throughput studies.98 A study was successful at using 

functionalized glass slides to assess short-term cytokine secretion (IFN-γ, IL-2, TNF-α) and cytolytic 

activity in a high-throughput fashion using fluorescent imaging of the cell populations.  

Our experiments fell short of displaying consistent emission intensity baselines, which may be a 

product of inconsistent manual solution titration. The various baseline levels were hedged by the 

comparison of the emission changes associated with an activated population from a control, which we 

assumed and proved would be related to the reactivity, or dextramer-positivity, of a T-cell group. The 

inconsistent background in our experiment renders modeling the kinetics of proton extrusion rather 

difficult and is certainly a potential area of improvement.  

Future Directions 

Metabolic Phenotyping as Insight into Activated Cell Populations 

Our presented system, though far from completion, lays the framework for a collective effort to 

discount the need for identifying immunodominant epitopes for each patient’s tumor. Though 

rudimentary, several elements of our approach can be improved upon and standardized for a method to 

collectively assessing a subject’s T-cell reactivity to presented antigens. A variety of different 

procedures can exist when focusing on biophysical phenomena associated with cellular activation. The 

energy-consuming nature of such a process entails a concatenation of measurable chemical changes that 

occur both inside and outside of the activated cell. In addition to the extracellular proton flux or 

intracellular calcium flux investigated in this study, approaches can also seek to characterize metabolic 

events such as oxygen consumption rates (OCR) or carbon dioxide generation from such events.  OCR 
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can be readily measured and is shown to be higher in CD8 cells than CD4s upon stimulation via a 

preference for aerobic glycolysis.99 Looking at ratios that relate oxygen consumption or carbon dioxide 

generation can even indicate which catabolic pathways such metabolically reprogrammed cells 

preferentially utilize. Theoretically, recording the basal oxygen consumption of a cell population and 

assessing for differences following antigen stimulation, or the admixture of responder cells, could shed 

light on the overall metabolic profile of intracellular events that follow TCR engagement. 

Along similar lines, assessment of the byproducts of cellular respiration or other aerobic 

metabolic processes within the activated lymphocyte can be another wing of reassurance with which to 

approach the issue. Studying these key tenets of the metabolic reprogramming that occurs to provide the 

materials for biosynthetic processes will shed light on discriminated an engaged group of cells from a 

nonreactive counterpart. As activated populations are more oxidative, they tend to be associated with 

greater levels of reactive oxygen species and elevated production of glycolytic compounds such as 

lactate. Such processes are necessary for cellular survival, growth, and proliferation, with the existence 

of data indicating that stimulation can also increase the observable median cell size in T-cells with time. 

The signaling pathways that result in the distinct metabolic signatures associated with lymphocytic 

activation can be explored using probes aimed at assessing compounds seen along the entire spectrum of 

activated T-cells. This allows us to study differences in the reprogramming that occurs in activated 

populations and directs our attention to downstream effects of an antigen-specific interaction, rather 

than focusing on the molecular structure or identity of that stimulus.  Our strategy therefore hedges 

against the uncertainty associated with the unique immunogenic stimuli in each patient by reporting 

instead on the downstream features of an activated receptor that can be observed independent of a 

tumor’s antigen expression profile. 
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Improving Detectability via Targeted Agent Delivery 

The TCR:MHC interactions that occur at the immunological synapse can dictate the fate of an 

effector cells. The synaptic complex consists of a variety of costimulatory receptors and adhesion 

proteins, on both the T-cell and APC, that can be targeted for an increasingly localized detection of 

extruded electrolytes. It is established that targeted agent delivery is more effective for eliciting a certain 

cellular response than systemic delivery. The impressive effects of targeted delivery can be understood 

from mathematical modeling of the localized concentration gradients that occur at the surface of a 

responder cell. The Laplace Diffusion equation can shed light on the paracrine effects of a APC on its 

target effector by showing that the concentration of a secreted protein or molecule will decrease 

inversely with radial distance, with the highest concentration noted at its surface.100 In a paracrine 

modeling system, in which a cell is secreting protein factors to another, we can observe that the gradient 

on the targeted cell surface is exponentially greater than the one found in solution. Thus, when an APC 

and T-cell interact at the TCR:MHC complex, it is extremely important for the two cells to do so as 

closely as possible in order to increase the release and absorptive capacities of both cells.  

Along these lines, a similar assumption can be made for extruded cellular analytes deriving from 

a stimulating immunological synaptic interaction. For our study, the protons extruded by membrane-

bound channels and pumps provide a conceptual framework for enabling detection as close as possible 

to the T-cell surface as possible via nanoscale vehicles. Liposomes are well studied platforms with ideal 

chemical properties for the encapsulation of HPTS, a strongly hydrophilic substance that would 

otherwise be relatively more difficult to load into the hydrophobic core of other alternatives.101 In 

addition, liposomes also have a surface modifiable lipid bilayer, to which targeting ligands can be 

conjugated and help with the navigation of such particles to specific targets.102 The formulation enables 

encapsulation and sustained release of the loaded agent over time through a two-step approach in which 

the internal polymer matrix is synthesized and entrapped within a liposomal shell structure that can have 
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targeting elements conjugated to its surface. We hypothesize that targeting such elements to adhesion 

molecules that participate peripherally in the TCR engagement process may provide a more sensitive 

reading of the acidification or proton gradient emanating from the surface of an activated T-cell.  

Our design for a murine prototype for such an endeavor would involve the conjugation of anti-

LFA1 (anti-leukocyte functional antigen-1, or anti-CD11a) antibodies to the surface of the liposomes 

with the intent of targeting the T-cell receptor that interacts with the ICAM-1 (Intercellular adhesion 

molecule-1) ligand on the surface of the dendritic cell. The formation of an immunological synapse 

relies heavily on the dynamic characteristics of the secondary receptors and adhesion factors associated 

with APC:T-cell crosstalk. Targeting this particular area with the nanoscale agents will allow for 

localized delivery of our fluorometric indicator and a heightened sensitivity to the T-cell surface, where 

the kinetics of proton release are highest and therefore the concentration gradient will be most 

detectable. One obvious advantage is that such an approach will heighten the sensitivity of 

distinguishing activated T-cells within a heterogeneous population of immune cells. Rather than relying 

on the global acidification of a soluble medium, this approach allows us to report on the 

microenvironment associated with activated lymphocytes during and after the process of antigen-

specific priming. Another advantage of this approach would be in the ability to render time-lapsed 

assessments for populations of cells to look for temporal trends that may indicate rapid rises in emission 

patterns that could correlate to the stimulation of a certain cell populations. The nontoxic nature of the 

approach could allow for longer and more comprehensive assessments of a patient’s immune cells. 

A Label-free Approach to Antigen-Specific Responses via Nanoscale Semiconductors 

An important hurdle to overcome from our various approaches entails the variability of baseline 

fluorescent characteristics seen with every assessment. Though a variety of factors may be associated 

with spectrophotometric approaches, such as the standard error associated with manual titration of 

HPTS in solution, our approach hedged against such inconsistencies by standardizing conditions for 
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each assessment and seeking the most ideal controls for each assessment. An incentive for 

transitioning our approach using a device-based approach is attractive due to the standardized conditions 

associated with a fabricated device that may be utilized several times for assessments from a particular 

patient, rendering the baselines of comparison increasingly standardized and aiding with the 

discrimination of significant changes in assessed reactivity or TCR engagement over the course of 

treatment. One-dimensional materials, such as nanowires, can be implemented for many applications 

such as the aforementioned “lab-on-a-chip” purposes. The unique electrical and surface-to-volume 

ratios of such devices, render their clinical integration increasingly exciting.44 The top-down approach 

of selective etching yields a high standard of manufacturing to the molecular-scale that can output 

consistent clinically useful data.103 Additionally, such technology has advanced tremendously in the past 

decade with more advanced techniques for chemical functionalization that allow utility to extend 

beyond simple analyte measurements, but also can help with the biophysical elements of cellular 

activation such as adhesion, morphology, and differentiation.104  

A newer, optoelectronic approach was investigated aimed at rapidly detecting solution pH in 

minute fluid volumes from a semiconducting nanodevice which showed a capability to measure the 

absolute concentration of molecular analytes in real-time. However, this particular design was uniquely 

deviant for the ability to calibrate each semiconductor using fluorescent, reducing inter-device 

variability, and showing unprecedented success in monitoring continuous cellular metabolic processes. 

In an experiment, Peretz-Soraka and colleagues were able to show real-time detection of pH changes 

resulting from the metabolic activity of Jurkat cells upon the administration of glucose. This could have 

tremendous consequences on our ability to identify metabolic signatures associated with antigen-

specific activation with time and enables such studies to occur at the picomolar level.12 Interestingly, the 

photoactive molecular species and chief sensing element of this highly-sensitive nanoscale 

semiconductor is actually a derivatized form of HPTS conjugated to the surface of the device. Although 
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the derivatized form possesses different functional groups, the study nevertheless points to the 

heightened sensitivity of spectroscopic agents as effective reporters for clinically relevant cellular 

processes. The capability to sensitively detect such information is extremely useful in the realm of 

immunological monitoring as it provides functional and molecular correlates, helping clinicians 

navigate the complexity of a patient’s immune response to decipher risks for tumor progression, organ 

rejection, sepsis, or other life-threatening conditions prior to encountering clinically observable 

symptoms. 
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Figures 

 

Figure 1. Polyclonal activation with cellular limits of assay detection and monitoring. Various 

numbers of cells (indicated) were plated in single wells and subjected to 1uM anti-CD3e mouse 

antibody for stimulation. Emission signals were collected for a 60-minute duration. Significant 

differences are marked with an asterisk (p<0.001).  
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Figure 2. Imaging flow cytometer depictions of APC:T-cell couplets formed after centrifugation 

and light resuspension. Antigen-presenting-cells and T lymphocytes are labeled in CD11c-FIT and 

CD8-Brilliant Violet 421 antibodies, respectively. Ch02 corresponds to FITC-labeled APCs and Ch07 

renders BV421-labeled CD8s. The three couplets shown are representative from a single experiment. 
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Figure 3. Fluorometric differences between Ag-specific and –nonspecific interactions in the OT-1 

system. Such interactions occur following presentation by BMDCs via MHC class I H2-Kb within the 

context of OT1/RAG2(-/-) mice. A) At 1uM peptide pulsing concentrations, SIINFEKL-presenting 

DC:T-cell interactions following complexation emit at more significantly than EIINFEKL-based control 

groups extending from 100% to 1% OT1 Responder CD8 cells. B) When peptide pulsing concentration 

is reduced tenfold, this effect remains preserved throughout the OT1 responding cell titrations. C) At 

0.01uM this significant differences are maintained from 100% until the 10%, but lost at a 1% OT1 

responder level. D) The lowest titration showed a significant difference only at the 100% OT1 responder 

level, with a loss of the effect for lower percentages of OT1 responders. Significant differences are 

marked with an asterisk (p<0.001).
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Figure 4. Antigen-Specific processing and presentation by “plate-passed” APC cells to a 100% 

specific MART-1 responder human T-cell line (DMF5). A) Plate-passed cells incubated with 1uM of 

unprocessed (MART-1 LP), processed peptide (MART-1 SP), or a form-fitting control peptide (gp100) 

showed significant differences upon complexation with DMF5, rather than passive mixing in adjacent 

wells. This held for all groups except the control gp100 group. B) DMF5 cells displayed a high 

percentage of dextramer positivity (71.7%) confirmed by flow cytometry, indicating antigen-specific 

reactivity. 
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Figure 5. Flow cytometry gating strategy and summary of overall expansion photometric data. A) 

Cells are initially gated and isolated by 7-AAD negativity, indicating viability.  Of the 7-AAD+ cells, 

CD3+CD8+ double-positives are selected and focus is placed on the MART-1+ cells. B) An 

amalgamation of successful MART-1 expansions utilizing plate-passed APCs is indicated, along with 

their emission intensity differences when complexed with cytokine-generated dendritic cells presenting 

either MART-1 “long” peptide or gp100 (form-fitting control) peptide. All pairs are significant with the 

exception of the 0.2% and 0.02% dextramer group. 
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Figure 6. Regression plot for Mean Emission differences between significant Ag-specific and –

nonspecific interactions in the MART-1 system. Values are standardized and based on dextramer 

positivity, as determined by flow cytometry.  A positive, linear correlation (R-squared=0.89) was 

obtained with significance (p=0.0015) and minimal outlier values. 
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(s)  

Figure 7. Calcium Flux Correlation for 0.9% MART-1 Dextramer Population. A qualitative, yet 

distinct signal is seen following conjugate formation, indicated with a blue arrow. SIINFEKL represents 

an antigen-specific interaction which displays a higher magnitude and frequency changes when 

compared to EIINFEKL, which is a much weaker, stimulatory interaction. Time in seconds.  
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Figure 8. In vivo Fluorometric Assessments in an Animal Tumor-responsive Model. Our treatment 

group (m-ECP) showed significant differences in emission intensity, or T-cell reactivity, compared to 

our control group (PBS) prior to an observable clinical response. Treatment days are indicated with a 

black arrow and assessment time points are indicated in red arrows. Error bars indicate standard error 

measurements.  
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